
  

Searching and Sorting
Part Two



  

Building a Better Sorting Algorithm



  

A Thought Experiment
● Suppose it takes 100ms to selection sort 

an array of 20,000 random elements.
● Approximately how long will it take to 

selection sort two smaller arrays, each of 
which has 10,000 random elements?

Answer at

https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev


  

n / 2

n / 2

n

n



  

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

¼T(n) ¼T(n)

2 · ¼T(n) = ½T(n)



  

With an O(n2)-time sorting algorithm, it 
takes twice as long to sort the whole array 
as it does to split the array in half and sort 

each half.

Can we exploit this?



  

The Key Insight: Merge

2 3 5 7 10 1 4 6 8 9



  

The Key Insight: Merge

2 3 5 7 101 4 6 8 9

Each step makes a single 
comparison and reduces 
the number of elements 

by one.
 

If there are n total 
elements, this algorithm 

runs in time O(n).



  

The Key Insight: Merge
● The merge algorithm takes in two sorted 

lists and combines them into a single 
sorted list.
● While both lists are nonempty, compare their 

first elements. Remove the smaller element 
and append it to the output.

● Once one list is empty, add all elements from 
the other list to the output.

● It runs in time O(n), where n is the total 
number of elements being merged.



  

Vector<int> merge(const Vector<int>& one, const Vector<int>& two) {
    Vector<int> result;
 

    /* Track indices of the next unmerged elements of the vectors. */
    int oneIndex = 0, twoIndex = 0;
 

    /* Keep comparing elements until one vector runs out. */
    while (oneIndex < one.size() && twoIndex < two.size()) {
        /* Add the smaller element to the output. */
        if (one[oneIndex] < two[twoIndex]) {
            result += one[oneIndex];
            oneIndex++;
        } else {
            result += two[twoIndex];
            twoIndex++;
        }
    }
 

    /* We've exhausted a vector; add all elements of the other. */
    while (one < one.size()) {
        result += one[oneIndex];
        oneIndex++;
    }
 

    while (two < two.size()) {
        result += two[twoIndex];
        twoIndex++;
    }
 

    return result;
}



  

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

“Split Sort”

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.
 

2. Selection sort each half.
 

3. Merge the halves back together.



  

“Split Sort”
void splitSort(Vector<int>& v) {  
    /* Split the vector in half */
    int half = v.size() / 2;
    Vector<int> left  = v.subList(0, half);
    Vector<int> right = v.subList(half);
 
    /* Sort each half. */
    selectionSort(left);
    selectionSort(right);
 
    /* Merge them back together. */
    v = merge(left, right);
} Prediction: This 

should still take time 
O(n2), but be about 

twice as fast as 
selection sort.

Takes O(n) time, 
since we copy all 
n elements into 

new Vectors.

Takes O(n2) time, but 
about half as much as 
what we did before.

Takes O(n) 
time.



  

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n)

4 · ¹/₁₆ T(n)   =   ¼T(n)



  

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.
 

2. Selection sort each quarter.
 

3. Merge two pairs of quarters into halves.
 

4. Merge the two halves back together.

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prediction: This 
should be four 
times as fast as 
selection sort.



  

Splitting to the Extreme
● Splitting our array in half, sorting each 

half, and merging the halves was twice 
as fast as selection sort.

● Splitting our array in quarters, sorting 
each quarter, and merging the quarters 
was four times as fast as selection sort.

● Question: What happens if we never 
stop splitting?



  

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



  

Mergesort
● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already 
sorted.

● Recursive step:
● Break the list in half and recursively sort 

each part.
● Use merge to combine them back into a single 

sorted list.



  

14 6 3 9 7 15 2 5 10 8 11 1 13 12 4

14 6 3 9 7 15 2 5 10 8 11 1 13 12 4

2 3 5 6 7 9 14 15 1 4 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mergesort, Intuitively

Split array into
roughly equal

halves

Recursively
mergesort
each half

Merge sorted
subarrays

Recursion!



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) {
      return;
   }
 
   /* Split v into two subvectors. */
   int half = v.size() / 2;
   Vector<int> left  = v.subList(0, half);
   Vector<int> right = v.subList(half);
 
   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

Time-Out for Announcements!



  

Midterm Exam Logistics
● Our midterm exam will be on Monday, February 10th from 7:00PM – 

10:00PM. Locations are assigned by last (family) name:
● A – H: Go to Bishop Auditorium.
● I – S: Go to Hewlett 200.
● T – Z: Go to Hewlett 201.

● Exam format:
● The exam covers L00 – L09 (basic C++ up through but not including recursive 

backtracking) and A0 – A3 (debugging through recursion).
● It’s a traditional sit-down, pencil-and-paper exam.
● It’s closed-book, closed-computer, and limited-note. You can bring an

8.5” × 11” sheet of notes with you to the exam. We will prove a syntax reference 
sheet for container types; it’s up on the course website.

● We’ve posted a searchable bank of practice problems to the course website, 
along with three practice exams made of questions from that bank.

● We have reached out to everyone who we believe is taking an alternate 
exam with location / time info. If you haven’t heard from us and you think 
you’re taking an alternate exam, contact us ASAP.



  

Midterm Review Session
● The amazing SL team will be holding a 

midterm review session later today:
5:00PM – 7:00PM
Room 380-380C

● Come with questions, leave with 
answers!

● Slides and video will be posted, but you 
will get more out of this if you attend in 
person.



  

The Importance of Practice
● The best way to prepare for the CS106B midterm 

is to work through practice problems.
● Reading the textbook and slides help, but that’s not 

sufficient on its own.
● Our Advice: If you get stuck on a problem, don’t 

just look at the answer and say “oh, that’s how 
you do it.” Instead, go to the LaIR, post on 
EdStem, or ask your SL for help.

● If you do look at our solutions, and you see that 
we did something differently than you, don’t 
move on until you understand what’s different 
and whether it matters. Ask us if you aren’t sure!



  

Recursive Drawing Prizes



  

Recursive Cocoa!
● We have five boxes 

of Droste Cacao 
that we’ll be 
awarding as 
prizes.

● We figured it’s a 
nice recursive art 
prize for our 
recursive art 
contest. 😃



  

The Awardees



  



  



  



  



  

Honorable Mention



  



  

lecture.notify_all();

(A C++ command to wake up parts of the program that 
are sleeping and waiting for a signal to continue.)



  

How fast is mergesort?



  

This next section is the mathiest math
we’re going to math all quarter.

It’s great if you can follow along with it.

You aren’t expected to come up with
this on your own.

If you like this analysis, take CS161!



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) {
      return;
   }
 
   /* Split v into two subvectors. */
   int half = v.size() / 2;
   Vector<int> left  = v.subList(0, half);
   Vector<int> right = v.subList(half);
 
   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

O(n) 
work

O(n) 
work

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) {
      return;
   }
 
   /* Split v into two subvectors. */
   int half = v.size() / 2;
   Vector<int> left  = v.subList(0, half);
   Vector<int> right = v.subList(half);
 
   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

O(n)

O(n)

O(n)

O(n)

O(n)

How much work does 
mergesort do at each level of 

recursion?



  

O(n)

O(n)

O(n)

O(n)

O(n)

Suppose our array has n elements. How many
levels will there be in the mergesort recursion?

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev


  

O(n)

O(n)

O(n)

O(n)

O(n)

Each recursive call cuts the array size in half.
 

We can only do that O(log n) times before we
run out of elements in our arrays.

 

Number of layers: O(log n).



  

O(n)

O(n)

O(n)

O(n)

O(n)

There are O(log n) levels in the recursion.
 

Each level does O(n) work.
 

Total work done: O(n log n).



  

What’s Up With O(n log n)?
● Recall: log n grows really, really slowly.

● log₂ 1,000,000,000 ≈ 30.
● So a runtime of O(n log n)

● … grows at a slightly faster rate than O(n), but
● … grows at a much slower rate than O(n2).

● That’s one of the reasons mergesort runs so quickly on 
large inputs – it scales much better than selection sort.

● It can be hard to visually tease out a difference 
between O(n) and O(n log n) in a runtime plot because 
the O(log n) term grows so slowly.



  

Can we do Better?
● Mergesort runs in time O(n log n), which is faster than 

selection sort’s O(n2).
● Can we do better than this?
● A comparison sort is a sorting algorithm that only 

learns the relative ordering of its elements by making 
comparisons between elements.
● All of the sorting algorithms we’ve seen so far are 

comparison sorts.
● Theorem: There are no comparison sorts whose 

average-case runtime can be better than O(n log n).
● If we stick with making comparisons, we can only hope 

to improve on mergesort by a constant factor!



  

A Quick Historical Aside
● Mergesort was one of the first algorithms 

developed for computers as we know them 
today.

● It was invented by John von Neumann in 1945 
(!) as a way of validating the design of the first 
“modern” (stored-program) computer.

● Want to learn more about what he did? Check 
out this article by Stanford’s very own Donald 
Knuth.

https://fermatslibrary.com/s/von-neumanns-first-computer-program


  

Improving Mergesort



  

An Interesting Observation
● Big-O notation talks about long-term growth, but 

says nothing about small inputs.
● For small inputs, selection sort can be faster than 

mergesort.

R
un

tim
e

Input Size

Mergesort

Selection 
SortSelection 

sort faster

Mergesort 
faster



  

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
    if (v.size() <= kCutoffSize) { 
        selectionSort(v); 
    } else { 
        int half = v.size() / 2;
        Vector<int> left  = v.subList(0, half);
        Vector<int> right = v.subList(half);
    
        hybridMergesort(left);
        hybridMergesort(right);
     
        merge(left, right, v);
     }
}



  

Why All This Matters
● Big-O notation gives us a quantitive way 

to predict runtimes.
● Those predictions provide a quantitive 

intuition for how to improve our 
algorithms.

● Understanding the nuances of big-O 
notation then leads us to design algorithms 
that are better than the sum of their parts.

● We can use binary search to look inside 
sorted sequences really, really quickly.



  

Your Action Items
● Read Chapter 10 of the textbook.

● It’s all about big-O and sorting.
● Finish Assignment 4.

● We’re here for you if you need help!
● Study for the Midterm

● Review old assignments, do practice exams, 
etc.



  

Next Time
● Designing Abstractions

● How do you build new container classes?
● Class Design

● What do classes look like in C++?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

